By L. N. Standifer
Entomologist, Science and Education Administration, Carl Hayden Center for Bee Research, Tuscon, Ariz. 85719.
BEEKEEPING IN THE UNITED STATES
AGRICULTURE HANDBOOK NUMBER 335
Revised October 1980
Pages 39 - 45
The natural diet of the adult honey bee is pollen and honey. Sometimes, however, when nectar is not available, bees collect sweet-tasting juices from overripe fruit and plant exudates. Also, certain insects secrete honeydew, which bees may collect and store as honey. During periods when no pollen is available, bees may collect powdery animal feed or spores from plants and store this material as they would pollen. This may have some food value but does not sustain brood rearing and is considered a poor substitute for pollen.
Nutritional Requirements
Honey bees require proteins (amino acids), carbohydrates (sugars), lipids (fatty acids, sterols), vitamins, minerals (salts), and water, and these nutrients must be in the diet in a definite qualitative and quantitative ratio for optimum nutrition.
Proteins and Amino Acids
Adult worker bees (1 to 14 days old) obtain dietary protein from pollen which workers collect and bring back to the hive; adult drone bees (1 to 8 days old) obtain dietary protein from food supplied by young workers which is a mixture of glandular secretions, pollen, and honey; and larval and adult queens obtain their protein from royal jelly secreted by young worker bees. Royal jelly also is fed to worker larvae less than 3 days old. Royal jelly is a secretion of the hypopharyngeal glands of worker bees normally 5 to 15 days of age. It is a creamy, milky white, strongly acid substance with a moisture content of 65 to 67 percent and rich in protein lipids, reducing sugars, B vitamins, vitamin C, and minerals.
Honey bees require specific amino acids for normal growth and development, reproduction, and brood rearing. The protein and amino acid requirements of larval and adult queens are unknown, but we have a fairly comprehensive knowledge of the chemical constitution of their basic food, royal jelly.
During the first 5 or 6 days of adult life, worker bees consume large amounts of pollen to obtain the protein and amino acids required to complete their growth and development. If young adult worker bees do not consume needed proteins, their hypopharyngeal glands (brood food glands) will not develop completely, and their royal jelly will not support normal growth and development of worker larvae or egg production in the adult queen. The requirement for protein decreases when worker bees discontinue nursing (between 10th to 14th day of adult life). Subsequently, the chief dietary constituent becomes carbohydrates obtained from nectars and honey.
Carbohydrates
Carbohydrates are abundant in the natural diet of the honey bee and are used mainly for the production of energy, but may be converted to body fats and stored. Some carbohydrates can be utilized by bees, some cannot, and some are toxic. Adult bees thrive on glucose, fructose, sucrose, trehalose, maltose, and melezitose, but they cannot use rhaminose, xylose, arabinose, galactose, mannose, lactose, raffinose, dextrin, or insulin. Differences in carbohydrate utilization between larvae and adults may be due to the absence of appropriate enzymes.
Lipids
Information on the nutritional need for dietary lipids (fatty acids, sterols, and phospholipids) in honey bees is fragmentary and inconclusive. Generally, lipids are used for energy, synthesis of reserve fat and glycogen, and for the functioning of cellular membranes. The lipid composition of adult bees differs from that of pollen. However, a phospholipid found in pollen also is found in the body tissue of adult bees. Another substance, 24-methylene cholesterol, also found in pollen, is the major sterol of the body tissue of adult queen and worker bees. Possibly, certain lipids have a significant role in the lubrication of food when it is ingested and prepared for absorption. All insects studied critically were found to require a dietary sterol; therefore, it is reasonable to assume the honey bee also requires this lipid.
Vitamins
When bees begin producing royal jelly for the young larvae and the queen, they need a diet high in vitamins. Nurse bees seem to need the following vitamin B complex for brood rearing: thiamine, riboflavin, nicotinamide (niacin, nicotinic acid), pyridoxine, pantothenate (pantothenic acid), folic acid, and biotin. Pantothenic acid is needed in worker-queen differentiation and nicotinic acid, in initiating brood rearing. In addition to these vitamins, ascorbic acid (vitamin C) also seems essential for brood rearing.
In general, the vitamin needs of a honey bee colony are satisfied as long as the pollen stores are abundant in the hive or fresh pollen is available to bees in the field. Micro-organisms naturally present in the alimenatry canal of bees may provide vitamins, and other essential substances, which may make an otherwise unsuitable diet adequate.
Minerals
Minerals required in the diet of humans and other vertebrates (sodium, potassium, calcium, magnesium, chlorine, phosphorus, iron, copper, iodine, manganese, cobalt, zinc, and nickel) are needed by some species of insects. Pollens contain all these minerals, some of which are required by bees.
Water
Water is collected by bees and used primarily as diluent for thick honey, to maintain optimum humidity within the hive, and to maintain appropriate temperatures in the brood area. The amount of water required and collected by a colony is generally correlated with the outside air temperature and relative humidity, strength of colony, and amount of brood rearing in progress.
Ingestion and Digestion
Food enters the alimentary canal (fig. 1) by way; of the month and passes through the esophagus to the honey stomach. In the honey stomach hydrolyzing enzymes break down the principal sucrose of nectar to the simpler monosaccharides glucose and fructose present in honey. Immediately behind the honey stomach is the proventricular value or honey stopper. It retains the nectar load in the honey stomach, controls passage of food into the midgut or ventriculus, and prevents food substances in the midgut from returning to the honey stomach.
The midgut is a relatively large segment of the alimentary canal, where food is temporarily stored and most digestion occurs. The inner wall of the midgut is lined with a peritrophicm membrane, presumably to protect the cells from damage by the gut contents.
The alimentary canal is completed by a short small intestine and a large intestine or rectum that comprises the hindgut where food digestion is completed. Undigested food residues are reformed into feces in the rectum and eliminated through the terminal anus. Passage of pollen through the alimentary canal of adult bees requires about 2-1/2 hours. Feces of adult bees contain almost intact, empty pollen grain shells.
The complex foods ingested by bees must be broken down (digested) into simpler units before they pass through (absorbed) the gut wall into the hemolymph (blood) for ultimate assimilation and utilization. Digestion depends on the activity of enzymes. Enzymes are present in the secretions of the salivary, postcerebral, and hypopharyngeal glands and in the secretions of the midgut epithelial cells. In addition, digestion may be facilitated by the micro-organisms present in the alimentary canal. Compound sugars must be broken down by enzymes to simple sugars before they can be absorbed and utilized.
Bees apparently do not have the enzymes or micro-organisms needed to digest the complex carbohydrates (cellulose, hemicellulose, and pectin) in the outer wall of pollen grains. Enzymes gain access to food inside punctured pollen grains and also by dissolving the "soft germinal pore areas" with digestive enzymes. Enzymes that digest protein are abundant in the alimentary canal of the adult bee and are furnished almost entirely by the midgut and hypopharyngeal glands. Proteins are first broken down to peptones and polypeptides; and these, in turn, are hydrolyzed to amino acids.
The lipid-splitting enzyme lipase is abundant in the midgut of adult workers and drones. In higher animals, lipids are digested by lipase or esterases into free fatty acids and glycerol. The fatty acids are made water soluble by neutralization with alkalies in the alimentary canal. Some insects produce enzymes that hydrolyze certain phospholipids (that is, ecithin and spingomyelin), but probably digestion of the esters and fatty acids usually results from the activity of bacteria. Certain lipids may be absorbed unchanged also.
Food absorption begins in the upper portion of the large intestine and is completed in the rectum, where water salts and other organic molecules are selectively absorbed. There are two pairs of rectal glands or pads on the sides of the rectum that function in water and possibly fat absorbtion.
Sources and Chemical Composition of the Natural Foods
Nectar
Nectar is the major source of carbohydrate in the natural diet of honey bees. It may contain 5 to 75 percent soluble solids (sugars) although most nectars are in the 25- to 40-percent range. The primary sugars are sucrose, glucose, and fructose. As nectar is manipulated and finally stored as honey, much of the sucrose is inverted to approximately equal parts of glucose and fructose. A normal-sized honey bee colony may use the nectar equivalent of 300 to 500 pounds a year.
Pollen
Pollen is eaten by adult bees and fed (via the mixture of glandular secretions, honey, and pollen supplied by nurse bees) to worker and drone larvae after they are 3 days old. Unlike young house bees, field bees do not require pollen in their diet. Stored pollen (bee bread) is consumed by nurse bees (fig. 2). Under natural conditions, pollen collected by bees is usually stored on the periphery of the brood area (fig. 3). In a colony rearing brood, pollen placed next to a comb full of eggs is consumed in 2 or 3 days; if placed on the periphery of larvae, it is used by nurse bees within 1 or 2 days but it may be stored for much longer periods of time. A normal-sized colony may consume 100 pounds or more pollen a year. Not all pollens are nutritionally alike; bees generally collect and utilize a mixture, and many individual pollens are nutritionally inadequate.
The protein content of pollens varies from 10 to 36 percent. Some pollens contain proteins that are deficient in certain amino acids required by bees. All the amino acids listed in table 1, except threonine, are essential for normal growth of the young adult bee. With the exception of histidine and perhaps arginine, they cannot be synthesized by bees and must be obtained from the consumed pollens or from some other appropriate protein source.
An average pollen mixture contains lipids (fats) and the following minerals: calcium, chlorine, copper, iron, magnesium, phosphorus, potassium, silicon, and sulfur. Vitamins include ascorbic acid, biotin, vitamins D and E, folic acid, mositol, nicotinic acid, pantothenic acid, pyridoxine, riboflavin, and thiamine. Amino acid content is listed in table 1.
Entomologist, Science and Education Administration, Carl Hayden Center for Bee Research, Tuscon, Ariz. 85719.
BEEKEEPING IN THE UNITED STATES
AGRICULTURE HANDBOOK NUMBER 335
Revised October 1980
Pages 39 - 45
The natural diet of the adult honey bee is pollen and honey. Sometimes, however, when nectar is not available, bees collect sweet-tasting juices from overripe fruit and plant exudates. Also, certain insects secrete honeydew, which bees may collect and store as honey. During periods when no pollen is available, bees may collect powdery animal feed or spores from plants and store this material as they would pollen. This may have some food value but does not sustain brood rearing and is considered a poor substitute for pollen.
Nutritional Requirements
Honey bees require proteins (amino acids), carbohydrates (sugars), lipids (fatty acids, sterols), vitamins, minerals (salts), and water, and these nutrients must be in the diet in a definite qualitative and quantitative ratio for optimum nutrition.
Proteins and Amino Acids
Adult worker bees (1 to 14 days old) obtain dietary protein from pollen which workers collect and bring back to the hive; adult drone bees (1 to 8 days old) obtain dietary protein from food supplied by young workers which is a mixture of glandular secretions, pollen, and honey; and larval and adult queens obtain their protein from royal jelly secreted by young worker bees. Royal jelly also is fed to worker larvae less than 3 days old. Royal jelly is a secretion of the hypopharyngeal glands of worker bees normally 5 to 15 days of age. It is a creamy, milky white, strongly acid substance with a moisture content of 65 to 67 percent and rich in protein lipids, reducing sugars, B vitamins, vitamin C, and minerals.
Honey bees require specific amino acids for normal growth and development, reproduction, and brood rearing. The protein and amino acid requirements of larval and adult queens are unknown, but we have a fairly comprehensive knowledge of the chemical constitution of their basic food, royal jelly.
During the first 5 or 6 days of adult life, worker bees consume large amounts of pollen to obtain the protein and amino acids required to complete their growth and development. If young adult worker bees do not consume needed proteins, their hypopharyngeal glands (brood food glands) will not develop completely, and their royal jelly will not support normal growth and development of worker larvae or egg production in the adult queen. The requirement for protein decreases when worker bees discontinue nursing (between 10th to 14th day of adult life). Subsequently, the chief dietary constituent becomes carbohydrates obtained from nectars and honey.
Carbohydrates
Carbohydrates are abundant in the natural diet of the honey bee and are used mainly for the production of energy, but may be converted to body fats and stored. Some carbohydrates can be utilized by bees, some cannot, and some are toxic. Adult bees thrive on glucose, fructose, sucrose, trehalose, maltose, and melezitose, but they cannot use rhaminose, xylose, arabinose, galactose, mannose, lactose, raffinose, dextrin, or insulin. Differences in carbohydrate utilization between larvae and adults may be due to the absence of appropriate enzymes.
Lipids
Information on the nutritional need for dietary lipids (fatty acids, sterols, and phospholipids) in honey bees is fragmentary and inconclusive. Generally, lipids are used for energy, synthesis of reserve fat and glycogen, and for the functioning of cellular membranes. The lipid composition of adult bees differs from that of pollen. However, a phospholipid found in pollen also is found in the body tissue of adult bees. Another substance, 24-methylene cholesterol, also found in pollen, is the major sterol of the body tissue of adult queen and worker bees. Possibly, certain lipids have a significant role in the lubrication of food when it is ingested and prepared for absorption. All insects studied critically were found to require a dietary sterol; therefore, it is reasonable to assume the honey bee also requires this lipid.
Vitamins
When bees begin producing royal jelly for the young larvae and the queen, they need a diet high in vitamins. Nurse bees seem to need the following vitamin B complex for brood rearing: thiamine, riboflavin, nicotinamide (niacin, nicotinic acid), pyridoxine, pantothenate (pantothenic acid), folic acid, and biotin. Pantothenic acid is needed in worker-queen differentiation and nicotinic acid, in initiating brood rearing. In addition to these vitamins, ascorbic acid (vitamin C) also seems essential for brood rearing.
In general, the vitamin needs of a honey bee colony are satisfied as long as the pollen stores are abundant in the hive or fresh pollen is available to bees in the field. Micro-organisms naturally present in the alimenatry canal of bees may provide vitamins, and other essential substances, which may make an otherwise unsuitable diet adequate.
Minerals
Minerals required in the diet of humans and other vertebrates (sodium, potassium, calcium, magnesium, chlorine, phosphorus, iron, copper, iodine, manganese, cobalt, zinc, and nickel) are needed by some species of insects. Pollens contain all these minerals, some of which are required by bees.
Water
Water is collected by bees and used primarily as diluent for thick honey, to maintain optimum humidity within the hive, and to maintain appropriate temperatures in the brood area. The amount of water required and collected by a colony is generally correlated with the outside air temperature and relative humidity, strength of colony, and amount of brood rearing in progress.

Ingestion and Digestion
Food enters the alimentary canal (fig. 1) by way; of the month and passes through the esophagus to the honey stomach. In the honey stomach hydrolyzing enzymes break down the principal sucrose of nectar to the simpler monosaccharides glucose and fructose present in honey. Immediately behind the honey stomach is the proventricular value or honey stopper. It retains the nectar load in the honey stomach, controls passage of food into the midgut or ventriculus, and prevents food substances in the midgut from returning to the honey stomach.
The midgut is a relatively large segment of the alimentary canal, where food is temporarily stored and most digestion occurs. The inner wall of the midgut is lined with a peritrophicm membrane, presumably to protect the cells from damage by the gut contents.
The alimentary canal is completed by a short small intestine and a large intestine or rectum that comprises the hindgut where food digestion is completed. Undigested food residues are reformed into feces in the rectum and eliminated through the terminal anus. Passage of pollen through the alimentary canal of adult bees requires about 2-1/2 hours. Feces of adult bees contain almost intact, empty pollen grain shells.
The complex foods ingested by bees must be broken down (digested) into simpler units before they pass through (absorbed) the gut wall into the hemolymph (blood) for ultimate assimilation and utilization. Digestion depends on the activity of enzymes. Enzymes are present in the secretions of the salivary, postcerebral, and hypopharyngeal glands and in the secretions of the midgut epithelial cells. In addition, digestion may be facilitated by the micro-organisms present in the alimentary canal. Compound sugars must be broken down by enzymes to simple sugars before they can be absorbed and utilized.
Bees apparently do not have the enzymes or micro-organisms needed to digest the complex carbohydrates (cellulose, hemicellulose, and pectin) in the outer wall of pollen grains. Enzymes gain access to food inside punctured pollen grains and also by dissolving the "soft germinal pore areas" with digestive enzymes. Enzymes that digest protein are abundant in the alimentary canal of the adult bee and are furnished almost entirely by the midgut and hypopharyngeal glands. Proteins are first broken down to peptones and polypeptides; and these, in turn, are hydrolyzed to amino acids.
The lipid-splitting enzyme lipase is abundant in the midgut of adult workers and drones. In higher animals, lipids are digested by lipase or esterases into free fatty acids and glycerol. The fatty acids are made water soluble by neutralization with alkalies in the alimentary canal. Some insects produce enzymes that hydrolyze certain phospholipids (that is, ecithin and spingomyelin), but probably digestion of the esters and fatty acids usually results from the activity of bacteria. Certain lipids may be absorbed unchanged also.
Food absorption begins in the upper portion of the large intestine and is completed in the rectum, where water salts and other organic molecules are selectively absorbed. There are two pairs of rectal glands or pads on the sides of the rectum that function in water and possibly fat absorbtion.
Sources and Chemical Composition of the Natural Foods
Nectar
Nectar is the major source of carbohydrate in the natural diet of honey bees. It may contain 5 to 75 percent soluble solids (sugars) although most nectars are in the 25- to 40-percent range. The primary sugars are sucrose, glucose, and fructose. As nectar is manipulated and finally stored as honey, much of the sucrose is inverted to approximately equal parts of glucose and fructose. A normal-sized honey bee colony may use the nectar equivalent of 300 to 500 pounds a year.

Pollen
Pollen is eaten by adult bees and fed (via the mixture of glandular secretions, honey, and pollen supplied by nurse bees) to worker and drone larvae after they are 3 days old. Unlike young house bees, field bees do not require pollen in their diet. Stored pollen (bee bread) is consumed by nurse bees (fig. 2). Under natural conditions, pollen collected by bees is usually stored on the periphery of the brood area (fig. 3). In a colony rearing brood, pollen placed next to a comb full of eggs is consumed in 2 or 3 days; if placed on the periphery of larvae, it is used by nurse bees within 1 or 2 days but it may be stored for much longer periods of time. A normal-sized colony may consume 100 pounds or more pollen a year. Not all pollens are nutritionally alike; bees generally collect and utilize a mixture, and many individual pollens are nutritionally inadequate.
The protein content of pollens varies from 10 to 36 percent. Some pollens contain proteins that are deficient in certain amino acids required by bees. All the amino acids listed in table 1, except threonine, are essential for normal growth of the young adult bee. With the exception of histidine and perhaps arginine, they cannot be synthesized by bees and must be obtained from the consumed pollens or from some other appropriate protein source.

An average pollen mixture contains lipids (fats) and the following minerals: calcium, chlorine, copper, iron, magnesium, phosphorus, potassium, silicon, and sulfur. Vitamins include ascorbic acid, biotin, vitamins D and E, folic acid, mositol, nicotinic acid, pantothenic acid, pyridoxine, riboflavin, and thiamine. Amino acid content is listed in table 1.
TABLE 1.-Amino acid content of average pollen expressed as percent of crude protein |