The microphone is mounted in a rubber housing designed to fit in a suitable hole in the back of the brood chamber, level with the top of the frames. The hole should be 1-5/8 inch diameter and fitted with a standard rubber sink plug when not in use. The inside of the hole should be covered with thin black paint.

Position 1 is for listening to the complete hive noise. The large knob to left of centre is a 3-position switch.

Position 2 is for listening to the hiss. (Volume control disabled in this position)

Position 3: High pass filter cut off 3,000Hz

The microphone input is a high quality audio amplifier with a crystal microphone input and earphone output. (Vol. range 0 to -10dB.)

Below are two transistors oscillator and transformer provide lt and ht supplies for V1. The output signal is further amplified by Tr9, rectified positive by D1 and fed to the anode of V1, a magic eye indicator valve, such that the green eye extinguishes above a certain signal level. Using position 2 of S1, the louder the warble, the lower the gain setting at which the eye goes out. Hence, the indicator will glow green.

Switch to position 2 and listen for the warbling, bubbling sound. Turn the volume down until the green light just goes out. If the arrow on the volume control points to the green area, close the hive up and leave for 5 days. If the arrow points to the red area, the colony may be preparing to swarm.

With the switch in position 2, rotate the volume control and listen for the warbling sound. Rotate the knob clockwise until the green indicator just goes out. Note that the quieter the warble is, the further up the volume control it will go. If the noise is too loud to extinguish the magic eye, attempt to lower the signal level with the volume control.

A two-transistor oscillator and transformer provide lt and ht supplies for V1. The output signal is further amplified by Tr9, rectified positive by D1 and fed to the anode of V1, a magic eye indicator valve, such that the green eye extinguishes above a certain signal level. Using position 2 of S1, the louder the warble, the lower the gain setting at which the eye goes out. Hence, the indicator will glow green.

Switch to position 2 and listen for the warbling, bubbling sound. Turn the volume down until the green light just goes out. If the arrow on the volume control points to the green area, close the hive up and leave for 5 days. If the arrow points to the red area, the colony may be preparing to swarm.

With the switch in position 2, rotate the volume control and listen for the warbling sound. Rotate the knob clockwise until the green indicator just goes out. Note that the quieter the warble is, the further up the volume control it will go. If the noise is too loud to extinguish the magic eye, attempt to lower the signal level with the volume control.

A two-transistor oscillator and transformer provide lt and ht supplies for V1. The output signal is further amplified by Tr9, rectified positive by D1 and fed to the anode of V1, a magic eye indicator valve, such that the green eye extinguishes above a certain signal level. Using position 2 of S1, the louder the warble, the lower the gain setting at which the eye goes out. Hence, the indicator will glow green.

Switch to position 2 and listen for the warbling, bubbling sound. Turn the volume down until the green light just goes out. If the arrow on the volume control points to the green area, close the hive up and leave for 5 days. If the arrow points to the red area, the colony may be preparing to swarm.

With the switch in position 2, rotate the volume control and listen for the warbling sound. Rotate the knob clockwise until the green indicator just goes out. Note that the quieter the warble is, the further up the volume control it will go. If the noise is too loud to extinguish the magic eye, attempt to lower the signal level with the volume control.