It's important what we put in the hives. I continue to worry more about fungicides and their interactions with pesticides and acaricides than the products alone.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558502/

Conclusions

Detoxication by P450s appears to be the basis for the tolerance bees show toward tau-fluvalinate, coumaphos and fenpyroximate, but not amitraz or thymol. Any SBI fungicide that inhibits P450-mediated detoxification has the potential to interact with tau-fluvalinate, and likely coumaphos and fenpyroximate as well. Given the large number of pesticides to which bees are potentially exposed, and the practical impossibility of testing every possible combination, examining pesticide interaction with P450s holds promise as a method to simplify pesticide interaction testing in a rational way. Testing for P450 interactions could serve as the first “tool” in a lab-based “toolbox” testing for potential pesticide interactions in bees.

While these laboratory bioassays point to potential problems associated with the various acaricide treatments, any management recommendations must be based on additional information gained from field experiments using whole colonies. Lethal-dose bioassays, by definition, require the use of doses that are high enough to cause acute mortality in bees – doses that are often much higher than bees are likely to encounter under field conditions. However, documentation of these interactions provides a foundation for future experiments using field-relevant doses and helps to focus the limited resources available for field experiments on those pesticide combinations with the greatest potential to cause harm. The routes of exposure to acaricides, fungicides and antimicrobials in beehives may be different from the topical and oral applications used in these bioassays. The actual exposure bees receive to formulated acaricides, sequestered acaricides in beeswax, and fungicide applications in agriculture need to be quantified to accurately assess the risk posed by interactions. Additionally, bees may experience sublethal effects that are, by definition, not quantifiable in lethal dose bioassays, but may have a substantial effect on colony health [74], [75]. Until more is known about the potential for interaction between acaricides, fungicides and antimicrobials in the real world it would be prudent for beekeepers to avoid concurrent use of acaricides that are detoxified by P450s – tau-fluvalinate, coumaphos, and fenpyroximate – especially in settings where honey bees may be simultaneously exposed to the P450-inhibiting SBI fungicides.